Best proximity point theory on vector metric spaces
نویسندگان
چکیده
In this paper, we first give a new definition of Ω-Dedekind complete Riesz space (E,≤) in the frame vector metric (Ω,ρ,E) and investigate relation between Dedekind our concept. Moreover, introduce contraction so called α-vector proximal mapping. Then, prove certain best proximity point theorems for such mappings spaces where is space. Thus, time, acquire results on spaces. As result, generalize some fixed proved both partially ordered as main V4 . Further, provide nontrivial comparative examples to show effectiveness results.
منابع مشابه
Best proximity point theorems in 1/2−modular metric spaces
In this paper, first we introduce the notion of $frac{1}{2}$-modular metric spaces and weak $(alpha,Theta)$-$omega$-contractions in this spaces and we establish some results of best proximity points. Finally, as consequences of these theorems, we derive best proximity point theorems in modular metric spaces endowed with a graph and in partially ordered metric spaces. We present an ex...
متن کاملNon-Archimedean fuzzy metric spaces and Best proximity point theorems
In this paper, we introduce some new classes of proximal contraction mappings and establish best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...
متن کاملOn Best Proximity Points in metric and Banach spaces
Notice that best proximity point results have been studied to find necessaryconditions such that the minimization problemminx∈A∪Bd(x,Tx)has at least one solution, where T is a cyclic mapping defined on A∪B.A point p ∈ A∪B is a best proximity point for T if and only if thatis a solution of the minimization problem (2.1). Let (A,B) be a nonemptypair in a normed...
متن کاملBest Proximity Point Theorems in Partially Ordered Metric Spaces
The notion of generalized Berinde type contraction non-self maps in partially ordered metric spaces is introduced, and some best proximity point theorems for this class are established. Mathematics Subject Classification: 47H10, 54H25
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications Faculty of Sciences University of Ankara. Series A1: mathematics and statistics
سال: 2021
ISSN: ['1303-5991']
DOI: https://doi.org/10.31801/cfsuasmas.780723